欢迎访问 生活随笔!

生活随笔

当前位置: 首页 > 编程语言 > python >内容正文

python

python 写入网络视频文件很慢_用Python将数据写入LMDB非常慢

发布时间:2025/6/17 python 23 豆豆
生活随笔 收集整理的这篇文章主要介绍了 python 写入网络视频文件很慢_用Python将数据写入LMDB非常慢 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

Creating datasets for training with Caffe I both tried using HDF5 and LMDB. However, creating a LMDB is very slow even slower than HDF5. I am trying to write ~20,000 images.

Am I doing something terribly wrong? Is there something I am not aware of?

This is my code for LMDB creation:

DB_KEY_FORMAT = "{:0>10d}"

db = lmdb.open(path, map_size=int(1e12))

curr_idx = 0

commit_size = 1000

for curr_commit_idx in range(0, num_data, commit_size):

with in_db_data.begin(write=True) as in_txn:

for i in range(curr_commit_idx, min(curr_commit_idx + commit_size, num_data)):

d, l = data[i], labels[i]

im_dat = caffe.io.array_to_datum(d.astype(float), label=int(l))

key = DB_KEY_FORMAT.format(curr_idx)

in_txn.put(key, im_dat.SerializeToString())

curr_idx += 1

db.close()

As you can see I am creating a transaction for every 1,000 images, because I thought creating a transaction for each image would create an overhead, but it seems this doesn't influence performance too much.

解决方案

In my experience, I've had 50-100 ms writes to LMDB from Python writing Caffe data on ext4 hard disk on Ubuntu. That's why I use tmpfs (RAM disk functionality built into Linux) and get these writes done in around 0.07 ms. You can make smaller databases on your ramdisk and copy them to a hard disk and later train on all of them. I'm making around 20-40GB ones as I have 64 GB of RAM.

Some pieces of code to help you guys dynamically create, fill and move LMDBs to storage. Feel free to edit it to fit your case. It should save you some time getting your head around how LMDB and file manipulation works in Python.

import shutil

import lmdb

import random

def move_db():

global image_db

image_db.close();

rnd = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(5))

shutil.move( fold + 'ram/train_images', '/storage/lmdb/'+rnd)

open_db()

def open_db():

global image_db

image_db = lmdb.open(os.path.join(fold, 'ram/train_images'),

map_async=True,

max_dbs=0)

def write_to_lmdb(db, key, value):

"""

Write (key,value) to db

"""

success = False

while not success:

txn = db.begin(write=True)

try:

txn.put(key, value)

txn.commit()

success = True

except lmdb.MapFullError:

txn.abort()

# double the map_size

curr_limit = db.info()['map_size']

new_limit = curr_limit*2

print '>>> Doubling LMDB map size to %sMB ...' % (new_limit>>20,)

db.set_mapsize(new_limit) # double it

...

image_datum = caffe.io.array_to_datum( transformed_image, label )

write_to_lmdb(image_db, str(itr), image_datum.SerializeToString())

总结

以上是生活随笔为你收集整理的python 写入网络视频文件很慢_用Python将数据写入LMDB非常慢的全部内容,希望文章能够帮你解决所遇到的问题。

如果觉得生活随笔网站内容还不错,欢迎将生活随笔推荐给好友。