欢迎访问 生活随笔!

生活随笔

当前位置: 首页 > 人工智能 > 目标检测 >内容正文

目标检测

CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测

发布时间:2025/3/21 目标检测 37 豆豆
生活随笔 收集整理的这篇文章主要介绍了 CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测

 

 

目录

搭建

1、下载代码

2、安装依赖库

3、导出COCO权重解压到checkpoint文件夹内

4、测试


 

 

搭建

1、下载代码

tensorflow-yolov3

2、安装依赖库

pip install -r ./docs/requirements.txt

3、导出COCO权重解压到checkpoint文件夹内

Exporting loaded COCO weights as TF checkpoint(yolov3_coco.ckpt

python convert_weight.py
python freeze_graph.py

 

4、测试

 

2019-12-25 15:05:02.766745: I => yolov3/darknet-53/Conv/weights (3, 3, 3, 32) => yolov3/darknet-53/Conv/BatchNorm/gamma (32,) => yolov3/darknet-53/Conv/BatchNorm/beta (32,) => yolov3/darknet-53/Conv/BatchNorm/moving_mean (32,) => yolov3/darknet-53/Conv/BatchNorm/moving_variance (32,) => yolov3/darknet-53/Conv_1/weights (3, 3, 32, 64) => yolov3/darknet-53/Conv_1/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_1/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_1/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_1/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_2/weights (1, 1, 64, 32) => yolov3/darknet-53/Conv_2/BatchNorm/gamma (32,) => yolov3/darknet-53/Conv_2/BatchNorm/beta (32,) => yolov3/darknet-53/Conv_2/BatchNorm/moving_mean (32,) => yolov3/darknet-53/Conv_2/BatchNorm/moving_variance (32,) => yolov3/darknet-53/Conv_3/weights (3, 3, 32, 64) => yolov3/darknet-53/Conv_3/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_3/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_3/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_3/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_4/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_4/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_4/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_4/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_4/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_5/weights (1, 1, 128, 64) => yolov3/darknet-53/Conv_5/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_5/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_5/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_5/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_6/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_6/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_6/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_6/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_6/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_7/weights (1, 1, 128, 64) => yolov3/darknet-53/Conv_7/BatchNorm/gamma (64,) => yolov3/darknet-53/Conv_7/BatchNorm/beta (64,) => yolov3/darknet-53/Conv_7/BatchNorm/moving_mean (64,) => yolov3/darknet-53/Conv_7/BatchNorm/moving_variance (64,) => yolov3/darknet-53/Conv_8/weights (3, 3, 64, 128) => yolov3/darknet-53/Conv_8/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_8/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_8/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_8/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_9/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_9/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_9/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_9/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_9/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_10/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_10/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_10/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_10/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_10/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_11/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_11/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_11/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_11/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_11/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_12/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_12/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_12/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_12/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_12/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_13/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_13/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_13/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_13/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_13/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_14/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_14/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_14/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_14/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_14/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_15/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_15/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_15/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_15/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_15/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_16/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_16/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_16/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_16/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_16/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_17/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_17/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_17/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_17/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_17/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_18/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_18/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_18/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_18/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_18/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_19/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_19/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_19/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_19/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_19/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_20/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_20/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_20/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_20/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_20/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_21/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_21/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_21/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_21/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_21/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_22/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_22/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_22/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_22/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_22/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_23/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_23/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_23/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_23/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_23/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_24/weights (1, 1, 256, 128) => yolov3/darknet-53/Conv_24/BatchNorm/gamma (128,) => yolov3/darknet-53/Conv_24/BatchNorm/beta (128,) => yolov3/darknet-53/Conv_24/BatchNorm/moving_mean (128,) => yolov3/darknet-53/Conv_24/BatchNorm/moving_variance (128,) => yolov3/darknet-53/Conv_25/weights (3, 3, 128, 256) => yolov3/darknet-53/Conv_25/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_25/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_25/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_25/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_26/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_26/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_26/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_26/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_26/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_27/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_27/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_27/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_27/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_27/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_28/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_28/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_28/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_28/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_28/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_29/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_29/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_29/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_29/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_29/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_30/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_30/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_30/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_30/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_30/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_31/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_31/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_31/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_31/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_31/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_32/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_32/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_32/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_32/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_32/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_33/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_33/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_33/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_33/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_33/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_34/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_34/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_34/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_34/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_34/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_35/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_35/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_35/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_35/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_35/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_36/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_36/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_36/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_36/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_36/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_37/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_37/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_37/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_37/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_37/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_38/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_38/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_38/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_38/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_38/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_39/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_39/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_39/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_39/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_39/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_40/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_40/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_40/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_40/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_40/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_41/weights (1, 1, 512, 256) => yolov3/darknet-53/Conv_41/BatchNorm/gamma (256,) => yolov3/darknet-53/Conv_41/BatchNorm/beta (256,) => yolov3/darknet-53/Conv_41/BatchNorm/moving_mean (256,) => yolov3/darknet-53/Conv_41/BatchNorm/moving_variance (256,) => yolov3/darknet-53/Conv_42/weights (3, 3, 256, 512) => yolov3/darknet-53/Conv_42/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_42/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_42/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_42/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_43/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_43/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_43/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_44/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_44/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_44/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_44/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_44/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_45/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_45/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_45/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_46/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_46/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_46/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_46/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_46/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_47/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_47/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_47/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_48/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_48/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_48/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_48/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_48/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_49/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_49/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_49/BatchNorm/moving_variance (1024,) => yolov3/darknet-53/Conv_50/weights (1, 1, 1024, 512) => yolov3/darknet-53/Conv_50/BatchNorm/gamma (512,) => yolov3/darknet-53/Conv_50/BatchNorm/beta (512,) => yolov3/darknet-53/Conv_50/BatchNorm/moving_mean (512,) => yolov3/darknet-53/Conv_50/BatchNorm/moving_variance (512,) => yolov3/darknet-53/Conv_51/weights (3, 3, 512, 1024) => yolov3/darknet-53/Conv_51/BatchNorm/gamma (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/beta (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/moving_mean (1024,) => yolov3/darknet-53/Conv_51/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_1/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_1/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_1/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_2/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv_2/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_2/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_3/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_3/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_3/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_4/weights (1, 1, 1024, 512) => yolov3/yolo-v3/Conv_4/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_4/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_5/weights (3, 3, 512, 1024) => yolov3/yolo-v3/Conv_5/BatchNorm/gamma (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/beta (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/moving_mean (1024,) => yolov3/yolo-v3/Conv_5/BatchNorm/moving_variance (1024,) => yolov3/yolo-v3/Conv_6/weights (1, 1, 1024, 255) => yolov3/yolo-v3/Conv_6/biases (255,) => yolov3/yolo-v3/Conv_7/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_7/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_7/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_8/weights (1, 1, 768, 256) => yolov3/yolo-v3/Conv_8/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_8/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_9/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_9/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_9/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_10/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_10/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_10/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_11/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_11/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_11/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_12/weights (1, 1, 512, 256) => yolov3/yolo-v3/Conv_12/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_12/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_13/weights (3, 3, 256, 512) => yolov3/yolo-v3/Conv_13/BatchNorm/gamma (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/beta (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/moving_mean (512,) => yolov3/yolo-v3/Conv_13/BatchNorm/moving_variance (512,) => yolov3/yolo-v3/Conv_14/weights (1, 1, 512, 255) => yolov3/yolo-v3/Conv_14/biases (255,) => yolov3/yolo-v3/Conv_15/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_15/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_15/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_16/weights (1, 1, 384, 128) => yolov3/yolo-v3/Conv_16/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_16/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_17/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_17/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_17/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_18/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_18/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_18/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_19/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_19/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_19/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_20/weights (1, 1, 256, 128) => yolov3/yolo-v3/Conv_20/BatchNorm/gamma (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/beta (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/moving_mean (128,) => yolov3/yolo-v3/Conv_20/BatchNorm/moving_variance (128,) => yolov3/yolo-v3/Conv_21/weights (3, 3, 128, 256) => yolov3/yolo-v3/Conv_21/BatchNorm/gamma (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/beta (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/moving_mean (256,) => yolov3/yolo-v3/Conv_21/BatchNorm/moving_variance (256,) => yolov3/yolo-v3/Conv_22/weights (1, 1, 256, 255) => yolov3/yolo-v3/Conv_22/biases (255,)

 

Tensor("conv_sbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32) Tensor("conv_mbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32) Tensor("conv_lbbox/BiasAdd:0", shape=(?, ?, ?, 255), dtype=float32)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

总结

以上是生活随笔为你收集整理的CV之YOLOv3:基于Tensorflow框架利用YOLOv3算法对热播新剧《庆余年》实现目标检测的全部内容,希望文章能够帮你解决所遇到的问题。

如果觉得生活随笔网站内容还不错,欢迎将生活随笔推荐给好友。