欢迎访问 生活随笔!

生活随笔

当前位置: 首页 > 编程资源 > 编程问答 >内容正文

编程问答

deep learning 作業 2.2

发布时间:2025/4/16 编程问答 3 豆豆
生活随笔 收集整理的这篇文章主要介绍了 deep learning 作業 2.2 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

为什么80%的码农都做不了架构师?>>>   

Optimization Methods

Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result.

Gradient descent goes "downhill" on a cost function JJ. Think of it as trying to do this:

**Figure 1** : **Minimizing the cost is like finding the lowest point in a hilly landscape**
At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point.

Notations: As usual, ∂J∂a=∂J∂a= da for any variable a.

To get started, run the following code to import the libraries you will need.

In [1]:

import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasetsfrom opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import *%matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'

1 - Gradient Descent

A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all mm examples on each step, it is also called Batch Gradient Descent.

Warm-up exercise: Implement the gradient descent update rule. The gradient descent rule is, for l=1,...,Ll=1,...,L:

W[l]=W[l]−α dW[l](1)(1)W[l]=W[l]−α dW[l]

b[l]=b[l]−α db[l](2)(2)b[l]=b[l]−α db[l]

where L is the number of layers and αα is the learning rate. All parameters should be stored in the parameters dictionary. Note that the iterator l starts at 0 in the for loop while the first parameters are W[1]W[1] and b[1]b[1]. You need to shift l to l+1 when coding.

In [2]:

# GRADED FUNCTION: update_parameters_with_gddef update_parameters_with_gd(parameters, grads, learning_rate):"""Update parameters using one step of gradient descentArguments:parameters -- python dictionary containing your parameters to be updated:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients to update each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dbllearning_rate -- the learning rate, scalar.Returns:parameters -- python dictionary containing your updated parameters """L = len(parameters) // 2 # number of layers in the neural networks# Update rule for each parameterfor l in range(L):### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads['dW' + str(l+1)]parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads['db' + str(l+1)]### END CODE HERE ###return parameters

In [3]:

parameters, grads, learning_rate = update_parameters_with_gd_test_case()parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) W1 = [[ 1.63535156 -0.62320365 -0.53718766][-1.07799357 0.85639907 -2.29470142]] b1 = [[ 1.74604067][-0.75184921]] W2 = [[ 0.32171798 -0.25467393 1.46902454][-2.05617317 -0.31554548 -0.3756023 ][ 1.1404819 -1.09976462 -0.1612551 ]] b2 = [[-0.88020257][ 0.02561572][ 0.57539477]]

Expected Output:

**W1**[[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]]
**b1**[[ 1.74604067] [-0.75184921]]
**W2**[[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]]
**b2**[[-0.88020257] [ 0.02561572] [ 0.57539477]]

A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.

  • (Batch) Gradient Descent:
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations):# Forward propagationa, caches = forward_propagation(X, parameters)# Compute cost.cost = compute_cost(a, Y)# Backward propagation.grads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)
  • Stochastic Gradient Descent:
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations):for j in range(0, m):# Forward propagationa, caches = forward_propagation(X[:,j], parameters)# Compute costcost = compute_cost(a, Y[:,j])# Backward propagationgrads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)

In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this:

**Figure 1** : **SGD vs GD**
"+" denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD).

Note also that implementing SGD requires 3 for-loops in total:

  • Over the number of iterations
  • Over the mm training examples
  • Over the layers (to update all parameters, from (W[1],b[1])(W[1],b[1]) to (W[L],b[L])(W[L],b[L]))
  • In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.

    **Figure 2** : **SGD vs Mini-Batch GD**
    "+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization.

    What you should remember:

    • The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.
    • You have to tune a learning rate hyperparameter αα.
    • With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large).

    2 - Mini-Batch Gradient descent

    Let's learn how to build mini-batches from the training set (X, Y).

    There are two steps:

    • Shuffle: Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously between X and Y. Such that after the shuffling the ithith column of X is the example corresponding to the ithithlabel in Y. The shuffling step ensures that examples will be split randomly into different mini-batches.

    • Partition: Partition the shuffled (X, Y) into mini-batches of size mini_batch_size (here 64). Note that the number of training examples is not always divisible by mini_batch_size. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full mini_batch_size, it will look like this:

    Exercise: Implement random_mini_batches. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the 1st1st and 2nd2nd mini-batches:

    first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size] second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size] ...

    Note that the last mini-batch might end up smaller than mini_batch_size=64. Let ⌊s⌋⌊s⌋ represents ss rounded down to the nearest integer (this is math.floor(s) in Python). If the total number of examples is not a multiple of mini_batch_size=64 then there will be ⌊mmini_batch_size⌋⌊mmini_batch_size⌋ mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be (m−mini_batch_size×⌊mmini_batch_size⌋m−mini_batch_size×⌊mmini_batch_size⌋).

    In [4]:

    # GRADED FUNCTION: random_mini_batchesdef random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):"""Creates a list of random minibatches from (X, Y)Arguments:X -- input data, of shape (input size, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)mini_batch_size -- size of the mini-batches, integerReturns:mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)"""np.random.seed(seed) # To make your "random" minibatches the same as oursm = X.shape[1] # number of training examplesmini_batches = []# Step 1: Shuffle (X, Y)permutation = list(np.random.permutation(m))shuffled_X = X[:, permutation]shuffled_Y = Y[:, permutation].reshape((1,m))# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionningfor k in range(0, num_complete_minibatches):### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1) * mini_batch_size]mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1) * mini_batch_size]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)# Handling the end case (last mini-batch < mini_batch_size)if m % mini_batch_size != 0:### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size:]mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size:]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)return mini_batches

    In [5]:

    X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case() mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size)print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape)) print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape)) print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape)) print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape)) print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3])) shape of the 1st mini_batch_X: (12288, 64) shape of the 2nd mini_batch_X: (12288, 64) shape of the 3rd mini_batch_X: (12288, 20) shape of the 1st mini_batch_Y: (1, 64) shape of the 2nd mini_batch_Y: (1, 64) shape of the 3rd mini_batch_Y: (1, 20) mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]

    Expected Output:

    **shape of the 1st mini_batch_X**(12288, 64)
    **shape of the 2nd mini_batch_X**(12288, 64)
    **shape of the 3rd mini_batch_X**(12288, 20)
    **shape of the 1st mini_batch_Y**(1, 64)
    **shape of the 2nd mini_batch_Y**(1, 64)
    **shape of the 3rd mini_batch_Y**(1, 20)
    **mini batch sanity check**[ 0.90085595 -0.7612069 0.2344157 ]

    What you should remember:

    • Shuffling and Partitioning are the two steps required to build mini-batches
    • Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.

    3 - Momentum

    Because mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate" toward convergence. Using momentum can reduce these oscillations.

    Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable vv. Formally, this will be the exponentially weighted average of the gradient on previous steps. You can also think of vv as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill.

     

    **Figure 3**: The red arrows shows the direction taken by one step of mini-batch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, we let the gradient influence vv and then take a step in the direction of vv.

     

    Exercise: Initialize the velocity. The velocity, vv, is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the grads dictionary, that is: for l=1,...,Ll=1,...,L:

    v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])

    Note that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the for loop.

    In [6]:

    # GRADED FUNCTION: initialize_velocitydef initialize_velocity(parameters):"""Initializes the velocity as a python dictionary with:- keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blReturns:v -- python dictionary containing the current velocity.v['dW' + str(l)] = velocity of dWlv['db' + str(l)] = velocity of dbl"""L = len(parameters) // 2 # number of layers in the neural networksv = {}# Initialize velocityfor l in range(L):### START CODE HERE ### (approx. 2 lines)v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))### END CODE HERE ###return v

    In [7]:

    parameters = initialize_velocity_test_case()v = initialize_velocity(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) v["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] v["db1"] = [[ 0.][ 0.]] v["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] v["db2"] = [[ 0.][ 0.][ 0.]]

    Expected Output:

    **v["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db1"]**[[ 0.] [ 0.]]
    **v["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db2"]**[[ 0.] [ 0.] [ 0.]]

    Exercise: Now, implement the parameters update with momentum. The momentum update rule is, for l=1,...,Ll=1,...,L:

    {vdW[l]=βvdW[l]+(1−β)dW[l]W[l]=W[l]−αvdW[l](3)(3){vdW[l]=βvdW[l]+(1−β)dW[l]W[l]=W[l]−αvdW[l]

    {vdb[l]=βvdb[l]+(1−β)db[l]b[l]=b[l]−αvdb[l](4)(4){vdb[l]=βvdb[l]+(1−β)db[l]b[l]=b[l]−αvdb[l]

    where L is the number of layers, ββ is the momentum and αα is the learning rate. All parameters should be stored in the parameters dictionary. Note that the iterator l starts at 0 in the for loop while the first parameters are W[1]W[1] and b[1]b[1] (that's a "one" on the superscript). So you will need to shift l to l+1 when coding.

    In [8]:

    # GRADED FUNCTION: update_parameters_with_momentumdef update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):"""Update parameters using MomentumArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- python dictionary containing the current velocity:v['dW' + str(l)] = ...v['db' + str(l)] = ...beta -- the momentum hyperparameter, scalarlearning_rate -- the learning rate, scalarReturns:parameters -- python dictionary containing your updated parameters v -- python dictionary containing your updated velocities"""L = len(parameters) // 2 # number of layers in the neural networks# Momentum update for each parameterfor l in range(L):### START CODE HERE ### (approx. 4 lines)# compute velocitiesv["dW" + str(l+1)] = beta*v["dW" + str(l+1)] + (1-beta)*grads['dW' + str(l+1)]v["db" + str(l+1)] = beta*v["db" + str(l+1)] + (1-beta)*grads['db' + str(l+1)]# update parametersparameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)]parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)]### END CODE HERE ###return parameters, v

    In [9]:

    parameters, grads, v = update_parameters_with_momentum_test_case()parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) W1 = [[ 1.62544598 -0.61290114 -0.52907334][-1.07347112 0.86450677 -2.30085497]] b1 = [[ 1.74493465][-0.76027113]] W2 = [[ 0.31930698 -0.24990073 1.4627996 ][-2.05974396 -0.32173003 -0.38320915][ 1.13444069 -1.0998786 -0.1713109 ]] b2 = [[-0.87809283][ 0.04055394][ 0.58207317]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907][ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902][-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]]

    Expected Output:

    **W1**[[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]]
    **b1**[[ 1.74493465] [-0.76027113]]
    **W2**[[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]]
    **b2**[[-0.87809283] [ 0.04055394] [ 0.58207317]]
    **v["dW1"]**[[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]]
    **v["db1"]**[[-0.01228902] [-0.09357694]]
    **v["dW2"]**[[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]]
    **v["db2"]**[[ 0.02344157] [ 0.16598022] [ 0.07420442]]

    Note that:

    • The velocity is initialized with zeros. So the algorithm will take a few iterations to "build up" velocity and start to take bigger steps.
    • If β=0β=0, then this just becomes standard gradient descent without momentum.

    How do you choose ββ?

    • The larger the momentum ββ is, the smoother the update because the more we take the past gradients into account. But if ββ is too big, it could also smooth out the updates too much.
    • Common values for ββ range from 0.8 to 0.999. If you don't feel inclined to tune this, β=0.9β=0.9 is often a reasonable default.
    • Tuning the optimal ββ for your model might need trying several values to see what works best in term of reducing the value of the cost function JJ.

    What you should remember:

    • Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
    • You have to tune a momentum hyperparameter ββ and a learning rate αα.

    4 - Adam

    Adam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum.

    How does Adam work?

  • It calculates an exponentially weighted average of past gradients, and stores it in variables vv (before bias correction) and vcorrectedvcorrected (with bias correction).
  • It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables ss (before bias correction) and scorrectedscorrected(with bias correction).
  • It updates parameters in a direction based on combining information from "1" and "2".
  • The update rule is, for l=1,...,Ll=1,...,L:

    ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪vdW[l]=β1vdW[l]+(1−β1)∂J∂W[l]vcorrecteddW[l]=vdW[l]1−(β1)tsdW[l]=β2sdW[l]+(1−β2)(∂J∂W[l])2scorrecteddW[l]=sdW[l]1−(β1)tW[l]=W[l]−αvcorrecteddW[l]scorrecteddW[l]√+ε{vdW[l]=β1vdW[l]+(1−β1)∂J∂W[l]vdW[l]corrected=vdW[l]1−(β1)tsdW[l]=β2sdW[l]+(1−β2)(∂J∂W[l])2sdW[l]corrected=sdW[l]1−(β1)tW[l]=W[l]−αvdW[l]correctedsdW[l]corrected+ε

    where:

    • t counts the number of steps taken of Adam
    • L is the number of layers
    • β1β1 and β2β2 are hyperparameters that control the two exponentially weighted averages.
    • αα is the learning rate
    • εε is a very small number to avoid dividing by zero

    As usual, we will store all parameters in the parameters dictionary

    Exercise: Initialize the Adam variables v,sv,s which keep track of the past information.

    Instruction: The variables v,sv,s are python dictionaries that need to be initialized with arrays of zeros. Their keys are the same as for grads, that is: for l=1,...,Ll=1,...,L:

    v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)]) s["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) s["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])

    In [10]:

    # GRADED FUNCTION: initialize_adamdef initialize_adam(parameters) :"""Initializes v and s as two python dictionaries with:- keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters["W" + str(l)] = Wlparameters["b" + str(l)] = blReturns: v -- python dictionary that will contain the exponentially weighted average of the gradient.v["dW" + str(l)] = ...v["db" + str(l)] = ...s -- python dictionary that will contain the exponentially weighted average of the squared gradient.s["dW" + str(l)] = ...s["db" + str(l)] = ..."""L = len(parameters) // 2 # number of layers in the neural networksv = {}s = {}# Initialize v, s. Input: "parameters". Outputs: "v, s".for l in range(L):### START CODE HERE ### (approx. 4 lines)v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))s["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))s["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))### END CODE HERE ###return v, s

    In [11]:

    parameters = initialize_adam_test_case()v, s = initialize_adam(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) v["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] v["db1"] = [[ 0.][ 0.]] v["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] v["db2"] = [[ 0.][ 0.][ 0.]] s["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] s["db1"] = [[ 0.][ 0.]] s["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] s["db2"] = [[ 0.][ 0.][ 0.]]

    Expected Output:

    **v["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db1"]**[[ 0.] [ 0.]]
    **v["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db2"]**[[ 0.] [ 0.] [ 0.]]
    **s["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **s["db1"]**[[ 0.] [ 0.]]
    **s["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **s["db2"]**[[ 0.] [ 0.] [ 0.]]

    Exercise: Now, implement the parameters update with Adam. Recall the general update rule is, for l=1,...,Ll=1,...,L:

    ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪vW[l]=β1vW[l]+(1−β1)∂J∂W[l]vcorrectedW[l]=vW[l]1−(β1)tsW[l]=β2sW[l]+(1−β2)(∂J∂W[l])2scorrectedW[l]=sW[l]1−(β2)tW[l]=W[l]−αvcorrectedW[l]scorrectedW[l]√+ε{vW[l]=β1vW[l]+(1−β1)∂J∂W[l]vW[l]corrected=vW[l]1−(β1)tsW[l]=β2sW[l]+(1−β2)(∂J∂W[l])2sW[l]corrected=sW[l]1−(β2)tW[l]=W[l]−αvW[l]correctedsW[l]corrected+ε

    Note that the iterator l starts at 0 in the for loop while the first parameters are W[1]W[1] and b[1]b[1]. You need to shift l to l+1 when coding.

    In [15]:

    # GRADED FUNCTION: update_parameters_with_adamdef update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):"""Update parameters using AdamArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionarylearning_rate -- the learning rate, scalar.beta1 -- Exponential decay hyperparameter for the first moment estimates beta2 -- Exponential decay hyperparameter for the second moment estimates epsilon -- hyperparameter preventing division by zero in Adam updatesReturns:parameters -- python dictionary containing your updated parameters v -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionary"""L = len(parameters) // 2 # number of layers in the neural networksv_corrected = {} # Initializing first moment estimate, python dictionarys_corrected = {} # Initializing second moment estimate, python dictionary# Perform Adam update on all parametersfor l in range(L):# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".### START CODE HERE ### (approx. 2 lines)v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1-beta1) * grads['dW' + str(l+1)]v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1-beta1) * grads['db' + str(l+1)]### END CODE HERE #### Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".### START CODE HERE ### (approx. 2 lines)v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t)v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t) # v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - np.exp(beta1, l)) # v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - np.exp(beta1, l))### END CODE HERE #### Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".### START CODE HERE ### (approx. 2 lines) # s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1-beta2) * grads['dW' + str(l+1)] * grads['dW' + str(l+1)] # s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1-beta2) * grads['db' + str(l+1)] * grads['db' + str(l+1)]s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2)*np.power(grads['dW' + str(l+1)],2)s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2)*np.power(grads['db' + str(l+1)],2)### END CODE HERE #### Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".### START CODE HERE ### (approx. 2 lines)s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**2)s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**2)### END CODE HERE #### Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*v_corrected["dW" + str(l+1)]/(np.power(s_corrected["dW" + str(l+1)],0.5) + epsilon)parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*v_corrected["db" + str(l+1)]/(np.power(s_corrected["db" + str(l+1)],0.5) + epsilon)### END CODE HERE ###return parameters, v, s

    In [16]:

    parameters, grads, v, s = update_parameters_with_adam_test_case() parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2)print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) W1 = [[ 1.63178673 -0.61919778 -0.53561312][-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313][-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931][-2.05269934 -0.31497584 -0.37661299][ 1.14121081 -1.09244991 -0.16498684]] b2 = [[-0.88529979][ 0.03477238][ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907][ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902][-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287][ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05][ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04][ 1.57413361e-04 4.72206320e-04 7.14372576e-04][ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05][ 2.75494327e-03][ 5.50629536e-04]]

    Expected Output:

    **W1**[[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]]
    **b1**[[ 1.75225313] [-0.75376553]]
    **W2**[[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09245036 -0.16498684]]
    **b2**[[-0.88529978] [ 0.03477238] [ 0.57537385]]
    **v["dW1"]**[[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]]
    **v["db1"]**[[-0.01228902] [-0.09357694]]
    **v["dW2"]**[[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]]
    **v["db2"]**[[ 0.02344157] [ 0.16598022] [ 0.07420442]]
    **s["dW1"]**[[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]]
    **s["db1"]**[[ 1.51020075e-05] [ 8.75664434e-04]]
    **s["dW2"]**[[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]]
    **s["db2"]**[[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]]

    You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference.

    5 - Model with different optimization algorithms

    Lets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.)

    In [17]:

    train_X, train_Y = load_dataset()

    We have already implemented a 3-layer neural network. You will train it with:

    • Mini-batch Gradient Descent: it will call your function:
      • update_parameters_with_gd()
    • Mini-batch Momentum: it will call your functions:
      • initialize_velocity() and update_parameters_with_momentum()
    • Mini-batch Adam: it will call your functions:
      • initialize_adam() and update_parameters_with_adam()

    In [18]:

    def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True):"""3-layer neural network model which can be run in different optimizer modes.Arguments:X -- input data, of shape (2, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)layers_dims -- python list, containing the size of each layerlearning_rate -- the learning rate, scalar.mini_batch_size -- the size of a mini batchbeta -- Momentum hyperparameterbeta1 -- Exponential decay hyperparameter for the past gradients estimates beta2 -- Exponential decay hyperparameter for the past squared gradients estimates epsilon -- hyperparameter preventing division by zero in Adam updatesnum_epochs -- number of epochsprint_cost -- True to print the cost every 1000 epochsReturns:parameters -- python dictionary containing your updated parameters """L = len(layers_dims) # number of layers in the neural networkscosts = [] # to keep track of the costt = 0 # initializing the counter required for Adam updateseed = 10 # For grading purposes, so that your "random" minibatches are the same as ours# Initialize parametersparameters = initialize_parameters(layers_dims)# Initialize the optimizerif optimizer == "gd":pass # no initialization required for gradient descentelif optimizer == "momentum":v = initialize_velocity(parameters)elif optimizer == "adam":v, s = initialize_adam(parameters)# Optimization loopfor i in range(num_epochs):# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epochseed = seed + 1minibatches = random_mini_batches(X, Y, mini_batch_size, seed)for minibatch in minibatches:# Select a minibatch(minibatch_X, minibatch_Y) = minibatch# Forward propagationa3, caches = forward_propagation(minibatch_X, parameters)# Compute costcost = compute_cost(a3, minibatch_Y)# Backward propagationgrads = backward_propagation(minibatch_X, minibatch_Y, caches)# Update parametersif optimizer == "gd":parameters = update_parameters_with_gd(parameters, grads, learning_rate)elif optimizer == "momentum":parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)elif optimizer == "adam":t = t + 1 # Adam counterparameters, v, s = update_parameters_with_adam(parameters, grads, v, s,t, learning_rate, beta1, beta2, epsilon)# Print the cost every 1000 epochif print_cost and i % 1000 == 0:print ("Cost after epoch %i: %f" %(i, cost))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(costs)plt.ylabel('cost')plt.xlabel('epochs (per 100)')plt.title("Learning rate = " + str(learning_rate))plt.show()return parameters

    You will now run this 3 layer neural network with each of the 3 optimization methods.

    5.1 - Mini-batch Gradient descent

    Run the following code to see how the model does with mini-batch gradient descent.

    In [19]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "gd")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Gradient Descent optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690736 Cost after epoch 1000: 0.685273 Cost after epoch 2000: 0.647072 Cost after epoch 3000: 0.619525 Cost after epoch 4000: 0.576584 Cost after epoch 5000: 0.607243 Cost after epoch 6000: 0.529403 Cost after epoch 7000: 0.460768 Cost after epoch 8000: 0.465586 Cost after epoch 9000: 0.464518

    Accuracy: 0.796666666667

    5.2 - Mini-batch gradient descent with momentum

    Run the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains.

    In [20]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Momentum optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690741 Cost after epoch 1000: 0.685341 Cost after epoch 2000: 0.647145 Cost after epoch 3000: 0.619594 Cost after epoch 4000: 0.576665 Cost after epoch 5000: 0.607324 Cost after epoch 6000: 0.529476 Cost after epoch 7000: 0.460936 Cost after epoch 8000: 0.465780 Cost after epoch 9000: 0.464740

    Accuracy: 0.796666666667

    5.3 - Mini-batch with Adam mode

    Run the following code to see how the model does with Adam.

    In [21]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Adam optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690563 Cost after epoch 1000: 0.651362 Cost after epoch 2000: 0.623838 Cost after epoch 3000: 0.584447 Cost after epoch 4000: 0.539826 Cost after epoch 5000: 0.555550 Cost after epoch 6000: 0.440262 Cost after epoch 7000: 0.329676 Cost after epoch 8000: 0.322698 Cost after epoch 9000: 0.356201

    Accuracy: 0.92

    5.4 - Summary

    **optimization method****accuracy****cost shape**
    Gradient descent79.7%oscillations
    Momentum79.7%oscillations
    Adam94%smoother

    Momentum usually helps, but given the small learning rate and the simplistic dataset, its impact is almost negligeable. Also, the huge oscillations you see in the cost come from the fact that some minibatches are more difficult thans others for the optimization algorithm.

    Adam on the other hand, clearly outperforms mini-batch gradient descent and Momentum. If you run the model for more epochs on this simple dataset, all three methods will lead to very good results. However, you've seen that Adam converges a lot faster.

    Some advantages of Adam include:

    • Relatively low memory requirements (though higher than gradient descent and gradient descent with momentum)
    • Usually works well even with little tuning of hyperparameters (except αα)

    References:

    • Adam paper: https://arxiv.org/pdf/1412.6980.pdf

    转载于:https://my.oschina.net/sizhe/blog/1815653

    总结

    以上是生活随笔为你收集整理的deep learning 作業 2.2的全部内容,希望文章能够帮你解决所遇到的问题。

    如果觉得生活随笔网站内容还不错,欢迎将生活随笔推荐给好友。